120 research outputs found

    Expressing advanced user preferences in component installation

    Get PDF
    State of the art component-based software collections - such as FOSS distributions - are made of up to dozens of thousands components, with complex inter-dependencies and conflicts. Given a particular installation of such a system, each request to alter the set of installed components has potentially (too) many satisfying answers. We present an architecture that allows to express advanced user preferences about package selection in FOSS distributions. The architecture is composed by a distribution-independent format for describing available and installed packages called CUDF (Common Upgradeability Description Format), and a foundational language called MooML to specify optimization criteria. We present the syntax and semantics of CUDF and MooML, and discuss the partial evaluation mechanism of MooML which allows to gain efficiency in package dependency solvers

    Description of the CUDF Format

    Get PDF
    This document contains several related specifications, together they describe the document formats related to the solver competition which will be organized by Mancoosi. In particular, this document describes: - DUDF (Distribution Upgradeability Description Format), the document format to be used to submit upgrade problem instances from user machines to a (distribution-specific) database of upgrade problems; - CUDF (Common Upgradeability Description Format), the document format used to encode upgrade problems, abstracting over distribution-specific details. Solvers taking part in the competition will be fed with input in CUDF format

    Solving package dependencies: from EDOS to Mancoosi

    Get PDF
    Mancoosi (Managing the Complexity of the Open Source Infrastructure) is an ongoing research project funded by the European Union for addressing some of the challenges related to the "upgrade problem" of interdependent software components of which Debian packages are prototypical examples. Mancoosi is the natural continuation of the EDOS project which has already contributed tools for distribution-wide quality assurance in Debian and other GNU/Linux distributions. The consortium behind the project consists of several European public and private research institutions as well as some commercial GNU/Linux distributions from Europe and South America. Debian is represented by a small group of Debian Developers who are working in the ranks of the involved universities to drive and integrate back achievements into Debian. This paper presents relevant results from EDOS in dependency management and gives an overview of the Mancoosi project and its objectives, with a particular focus on the prospective benefits for Debian

    Deterministic Automata for Unordered Trees

    Get PDF
    Automata for unordered unranked trees are relevant for defining schemas and queries for data trees in Json or Xml format. While the existing notions are well-investigated concerning expressiveness, they all lack a proper notion of determinism, which makes it difficult to distinguish subclasses of automata for which problems such as inclusion, equivalence, and minimization can be solved efficiently. In this paper, we propose and investigate different notions of "horizontal determinism", starting from automata for unranked trees in which the horizontal evaluation is performed by finite state automata. We show that a restriction to confluent horizontal evaluation leads to polynomial-time emptiness and universality, but still suffers from coNP-completeness of the emptiness of binary intersections. Finally, efficient algorithms can be obtained by imposing an order of horizontal evaluation globally for all automata in the class. Depending on the choice of the order, we obtain different classes of automata, each of which has the same expressiveness as CMso.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    The first-order theory of lexicographic path orderings is undecidable

    Get PDF
    We show, under some assumption on the signature, that the *This formula not viewable on a Text-Browser* fragment of the theory of any lexicographic path ordering is undecidable. This applies to partial and to total precedences. Our result implies in particular that the simplification rule of ordered completion is undecidable

    How to win a game with features

    Get PDF
    We show, that the axiomatization of rational trees in the language of features given elsewhere is complete. In contrast to other completeness proofs that have been given in this field, we employ the method of Ehrenfeucht-Fraïssé Games, which yields a much simpler proof. The result extends previous results on complete axiomatizations of rational trees in the language of constructor equations or in a weaker feature language

    Ordering constraints on trees

    Get PDF
    We survey recent results about ordering constraints on trees and discuss their applications. Our main interest lies in the family of recursive path orderings which enjoy the properties of being total, well-founded and compatible with the tree constructors. The paper includes some new results, in particular the undecidability of the theory of lexicographic path orderings in case of a non-unary signature

    Well-definedness of Streams by Transformation and Termination

    Get PDF
    Streams are infinite sequences over a given data type. A stream specification is a set of equations intended to define a stream. We propose a transformation from such a stream specification to a term rewriting system (TRS) in such a way that termination of the resulting TRS implies that the stream specification is well-defined, that is, admits a unique solution. As a consequence, proving well-definedness of several interesting stream specifications can be done fully automatically using present powerful tools for proving TRS termination. In order to increase the power of this approach, we investigate transformations that preserve semantics and well-definedness. We give examples for which the above mentioned technique applies for the ransformed specification while it fails for the original one

    Equational and membership constraints for infinite trees

    Get PDF
    We present a new constraint system with equational and membership constraints over infinite trees. It provides for complete and correct satisfiability and entailment tests and ir therefore suitable for the use in concurrent constraint programming systems which are based on cyclic data structures. Our set defining devices are greatest fixpoint solutions of regular systems of equations with a deterministic form of union. As the main technical particularity of the algorithms we present a novel memorization technique. We believe that both satisfiability and entailment tests can be implemented in an efficient and incremental manner
    corecore